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THEORY OF THE 2s AND 2p EXCITATION OF
THE HYDROGEN ATOM INDUCED BY ELECTRON IMPACT

by
Kazem Omidvar
Goddard Space Flight Center

SUMMARY

A numerical calculation has been carried out to evaluate the 3x3 cross-section
matrix involved in the electron impact excitation of the ground state of H atom to
the 2s and 2p levels. The method of solution is that of atomic eigenstates expan-
sion. In this paper, instead of the iterative technique used by other authors,
the definite integral terms in the coupled radial differential equations are
eliminated through some linear transformation of the radial functions, thus avoiding
iteration of these equations. The accuracy of the numerical integration is tested by
satisfying the equation of reciprocity and the equation of continuity of currents with
an error-to-value ratio less than 1 per 1000 on the average; and the maximum of
this ratio, except for a few cases, has been kept below 5 percent. The results are
in agreement with the results of an iterative technique.

To evaluate the effect of the long-range and the centrifugal potential, a simple
perturbation theory is developed. The six cross sections 1s—2s,1s—-2p, 1s—1s,
2s —» 2s, 2s —2p, and 2p—2p are tabulated. The 2p—2p cross section requires the
solution of the sets of differential equations with different parities. With the validity
of the eigenstates expansion assumed, it is found by comparison with the eigenstates
expansion calculation that the Born approximation, despite its simplicity, gives
meaningful results for low and close-to-the-threshold energies of the bombarding
electrons. The effect of the exchange potentials on the cross sections is also in-
vestigated. Finally, an interesting structure of the 1s - 2s excitation cross section
above threshold is found.
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THEORY OF THE 2s AND 2p EXCITATION OF
THE HYDROGEN ATOM INDUCED BY ELECTRON IMPACT*

by
Kazem Omidvar
Goddard Space Flight Center

INTRODUCTION

Calculation of the excitation cross sections in atomic hydrogen by electron impact corre-
sponds to the solution of the problem of three interacting bodies: one proton, and two electrons.
By taking the position of the proton as the center of mass, the problem will reduce to the task of
finding the nonseparable wave function of the system of the two electrons with an attractive cen-
ter of force. Such a solution has not been found. However, if this wave function is expanded in
terms of the eigenstates of the hydrogen atom, the coefficients of the expansion, which are func-
tions of the position vector of the free electron, can be found through numerical integration. When
an infinite number of terms is included in the expansion, the solution to the problem is exact.
Furthermore, the expansion has the advantage that the asymptotic form of its coefficients is
automatically the asymptotic form of the free electron wave function scattered from different
atomic states, which are simply related to the excitation cross sections.

In this paper, atomic states 1s, 2s,2p are included in the expansion and, by antisymmetrizing
the two electron wave functions according to the exclusion principle, some contribution from the
continuum in the expansion is also taken into account. The first calculation of this type was per-
formed by Marriot (Reference 1), whose expansion consisted of the 1s and the 2s states in order
to calculate the 1s - 2s transition cross section. This calculation was extended by Smith (Refer-
ence 2) to higher total orbital angular momenta of the system. Percival and Seaton (Reference 3)
have formulated the eigenstate expansion technique in general and have tabulated the coefficients
of the integro-differential equations fors, p, and d atomic electrons. Burke, Smith, and Schey
(References 4 and 57), using the equations of Percival and Seaton for the three states 1s, 2s, 2p,
have integrated the resulting integro-differential equations. In this paper we solve the same dif-
ferential equations by a linear transformation of the differential equations in order to avoid the
need for iteration of these equations (Reference 6)3#

*Also has appeared in a condensed form in the Physical Review, Vol. 133, Feb. 17, 1964.

tA similar calculation bas been performed by R. Damburg and R. Peterkop; this will appear in the USSR Journal of Experimental and
Theoretical Physics. A different method to calculate the 1s-2s electron impact transition cross section in hydrogen is being con-
sidered by L. Kyle and A. Temkin, adopting the nonadiabatic theory of electron scattering developed by A. Temkin (see References
21, 22); the calculation is in progress.

1A similar calculation has been carried out in Reference 6. Here the L = 0,1 cases have been solved by noniterative, and all other
cases by iterative, methods.




The numerical integrations were carried out for all partial waves, while in higher partial
waves the Born approximation was used. The transition between the eigenstates expansion cal-
culation and the Born approximation takes place when the results of the two calculations agree
closely.

FORMULATION
Derivation of the Differential Equations

Since spin orbit interaction of the electrons is neglected, the total orbital angular momentum
L and the total spin angular momentum S are separately conserved. We can then divide the inter-
actions into antiparallel spin states, where S = 0, and parallel spin states, where S = 1. We deal
with spatial wave functions of the electrons only, and for brevity we call the orbital angular
momentum the angulayr momentum.

Neglecting the motion of the proton of the hydrogen atom and taking its position as the origin
of the coordinate system, the Schroedinger equation for the system can be written

[H“E]\/J(l‘l,l‘z) = 0, (1)

where r, and r, are the position vectors of the bound and free electrons; and in atomic units
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where E is the total energy of the system and r, is the distance between the two electrons. We
expand the total wave function ¢(r1 , rz) in terms of the eigenfunctions of the total angular
momentumlL,

\,L'(rl, r2) = Z\/JL (rl’ r2) : (3)

Since these eigenfunctions are orthogonal and distinct, substitution of Equation 3 in Equation 1
gives

(H-E]y, (rl, rz) = 0. (4)




The explicit form of y_ (r,, r,) is given by

N § 14
Vo (£, ry) = (1+/3P12)£ le-:nz:Ld’(“l)clmx-"l)

n{ﬁ{ﬁz T
x 1g ! u(k"; % rz) Yem, (9,) . (5)
¢(n; 4y my, rl) = 'P(n, 4, 1) Y'f’:"'x () - (6)

Here ¢(n, £, m,, r,) is the hydrogen atom wave function with radial part r ! P(n, %,, rl) and angu-
lar part ¥y (9,) and quantum numbers nf, m,; r;! u(kni/&z, r2) is the radial part and ¥y _ (0,) is
the angular part of the free electron wave function with quantum numbers k_ 4, m,. The relation
between the wave number k_ and n, is given by '

1

B 1
kDo 2<E?‘> 0
L4

Finally the constants C_ %" = (£, 4, m m, |LM ), with M representing the total magnetic quantum number,
are vector coupling coefficients which make the linear combination of the products of the one elec-
tron wave function in Equation 5 the eigenfunction of L. In the problem under consideration,

n =1,254,=0,1;4,° lL'”C1|’ T |L+'£1‘ s mpa-4, - ,4;andm, = -4, -, £,

To make the total wave function symmetric for antiparallel spins or antisymmetric for parallel
spins, the operator P,, interchanges r, and r, while g is +1 for the first case and is -1 for the
second.

By taking L perpendicular to the z-axis, M= 0 andm, = -m,. Equation 5 can then be written

£4
Yo (ryory) = (1+44P,) ? ; lelm:zqﬁ(nl{lml’rl)

nl'ﬂl’ﬁz y

x 1, ! u(knx 4y "2) Y,g2m2 (Qz) . (8)

In order that ( r r2) closely approximates the exact wave function, we minimize the ex-
pectation value of the energy operator with respect to the radial parts of the free electron wave
functions,

5J¢L*(rl,rz)[H—E]¢L(rl,r2)d3r1d3r2 = 0. (9)



It has been shown by Kohn (Reference T) that the differences between the scattering amplitudes
obtained from these equations and the exact scattering amplitudes are quadratic in the difference
betweeny, (r, , r,) and the exact wave function. When the variation is carried out inside the in-
tegral, we obtain

? 24
mlm’;qu ny 4 m, \)Yfé;.z(Qz) [H_E]HZ’L(rlvrz)dsrlsz = 0. (10)

™

By means of Equations 2 and 8, the Schroedinger equation for the hydrogen atom,

2 1
l:Vf + r—l:] qb(nl 4, my, rl) = n—12 dJ(nl'ﬂl my, rl) , (11)

and Equation 7, Equation 10 reduces to

5 5 S /6{ ‘/C
. :)- j‘f’* (“1'{1 ml’rl)Y’f:mz (Qz> (1+BP12>

ml ’{/E ml

4 [y +1) 1 1
: [vri‘ L At TR | LSRN

x 1yt u<kn,' Zx '2) Y4, (%) ®rp a2, = 0, (12)

where Vri is the radial part of V2. By orthogonality of the hydrogen atom and spherical harmonics
wave functions, the relation (Reference 8)

£4L]2
E [C} =1, (13)

the integration by parts of the exchange terms, and the relation*

LAL 414 &JCL
Commo = (7 TGN (14)

*Reference 8, Equation 3.16b.




Equation 12 leads to

k 4,,
vz-f&_l_) +k2+—2 (—2—r- _ ’E’CL {’{Z’L
T, l'22 T, l‘ 2 -mO mlmllo

ml ’{/{l mlr

u(kn'l 1,1,
x |b(ny 4y my, rl) T, Y£2’mz’( 2)

(k ’€2 . r)
+Bp(ny £y my, r,) x T, Yfﬂz’mz’ (9)| a3r, d0,
+ (_) /cl 25({ /{, /ﬂfﬁ)<~—+k3>
"1%1%21

J; P(ny 4y, ry) Py 4y, rp) x “(knl’ 1y, r1> dr, = 0. (15)

If 1/r, is expanded in terms of the Legendre polynomials and use is made of the addition theorem,*
we obtain

©

A
1 re
T, ; r 5N (°°s 912)

A=0

© +A

4 <
1 T e () B (%) (16)
A=0 PN

In this expression ¢,, is the angle between the position vectors r, and r, at the origin, and r. is
the smaller and r. is the larger of |r,| and |r,|. We also introduce

2
y)\ (n'f,n' £, rz) = rz‘()\*‘l) I P(n{. rl) P(n’ £, rl) rl)‘ dr,
0

(17)

*Reference 8, Equation 4.28.



Then it follows that

® P(n'ﬁ, rl) P(n‘ £, rl) = i
j o dry = Z Y () Y5 (%) y (nt a4, ry) (18)

By means of Equation 18, the relation*

2,€ +1 2{ +1 V2
J‘Y’{’:m,‘g Y'{)/zmz Y'f/lm dQ = l:( ; ) ( - )J C{l{{ﬁaclﬁl{{ﬂ:* ! (19)
1

4 (2{3 + li mymymg 000

and the definition
(n/clknl/p) - J:) P(nd, r)u(knl/C', r) dr , (20)

Equation 15 when multiplied by r, gives

az A, (ty 1) 2
lidrzz _—_r 2 +kn1: + ;-2 u(knl’ﬁz, r2>
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x {(2&2/ + 1> Cuml'r:,l Co00 = Cun fnzz Coo0” Yy (nyAyng 4 r 2) (k 4, 1‘)

2'{7,2' +1\¥2 MiA MA MAT A
' ,8<2{1' * 1> C”’“2211 Cooo” C*‘mzrzn " Cooo’ " Py 4, r,) Y, (nl £1knl' £, rz)

7
t B % T2 4y 4 &)(n—12+k2>p(nl' ) (i Ik, 2y) = 0. a1

nl{ l/ﬂl

17172

In the exchange integrals above we have defined P(kn! Zos r) as u(k"l 4,5 r) .

*Reference 8, Equation 4.34.




The vectorial equations

2 (22)

where L is constant but £, and 4, take the values given before, can be divided into two groups, one
with L-4, -4, even and the other withL-{ £, odd. Since the total spatial wave function has the
parity of £, +4,, in the first group the wave function has the parity of L and in the second a parity
opposite toL. By conservation of parity we have two distinct groups of interactions. In this
problem, where 1s, 2s, and 2p states of atomic hydrogen are taken into account, it is easy to see
that, whenL -4, - £, is even, the set of quantum numbers knl 4, has four values: one for each of
the 1s and 2s states, and two for the 2p state. WhenL-£, -4, is odd, k, 4, has one value which
corresponds to the elastic scattering of electrons by the 2p state of the hydrogen atom. Equation
21 is evaluated for these cases, and the resulting differential equations are listed in Appendix A.
In evaluating Equation 21, it should be noted that the cml}n; 3’ coefficients are subject to the condi-
tion that £, £, 4, form a closed triangle and m; = m, +m,.* This limits the summation over » and
¢ considerably to few terms only. Summation overm, , m,’, A, and » is carried out using the numer-
ical values of the C coefficients given by Condon and Shortley (Reference 9).

Percival and Seaton (Reference 3) have derived the same differential equations for the scat-
tering of free electrons by atomic s, p, and d electrons in the hydrogen atom using the theory of
irreducible tensor operators to evaluate the interaction terms between the two electrons in the
differential equations. The calculation becomes considerably simpler in this way. The results
of the two methods are identical.

In the rest of the paper, except the section on page 14, we discuss the solutions to the four
coupled differential equations given in Appendix A and which arise whenL-4, -4, is even. The
single differential equations for L- £, -£, odd are derived in the excepted section (page 14). Iis
numerical integration can be treated as a special case of the four coupled differential equations.

When the integrals representing the direct potentials in the four differential equations are
evaluated and some change is made in the limits of the exchange potential integrals, these equa-
tions can be written in the following matrix form:

az L (1, +1)
m +kn2— ———rz—— "(kn I r) = 2Vu(kn 1., r) . (23)

The four components of v are the four radial functions of the free electron. v is a 4x4 symmetric
matrix that is the sum of three matrices,

(24)

o @
By = Fy v Zgﬁj hjdr .,
0

*Reference 8, Equation 3.14.



where D,; is the direct potential, E;; is the exchange potential, and where both are functions of r.
The matrix E;, contains in addition integrals with respect to r, and for the purpose of numerical
integration it can be written as the sum of two matrices. The explicit forms of D,y Fipr g
and h}; are given in Appendix B. The value of ¢ is 2fori=j=3andi=j =4, andis 1forall
other values of i and j. It is understood that for the exchange terms the components of , on the
right-hand side of Equation 23 are inside the integrals of the exchange terms.

Derivation of the Transmission Matrix from Solutions
of the Differential Equations

The method is similar to that used by Bransden and McKee (Reference 10), and by Marriot
(Reference 1). Equation 23 constitutes a set of four coupled second-order differential equations.
Three components of u can be eliminated from these equations, resulting in an 8t order differ-
ential equation for the remaining component. Therefore there are eight sets of solutions to Equa-
tion 23. However, only half of these solutions are regular at the origin. Each of the four regular
solutions corresponds to a definite vector u. The four vectors can properly be represented by a
4x4 matrix uen,j = 1,2, 3, 4,where n corresponds to the particular component and j corre-
ponds to the particular solution of u. The four solutions are carried out numerically in the next
section.

From the explicit form of v it can be seen that v vanishes at infinity. The asymptotic solu-
tion of u as given by Equation 23 is therefore

n

L7
unj(r) x anjsin (knr— p) +5nj> (n,j =1,2,3,4), (25)

where a_; is the amplitude and 5,

is the phase shift of the jtt solution of the nt" component of u.

Corresponding to the four components of u, there are 4 channels open to the reaction. If the
incident wave is in the mt" channel (m © 1, 2, 3, 4), the traveling wave in the n'* channel will be
given by

u, () ~ exp [—i(kn - anr)]S(m, ny - S exp[i(kn i ln77>:| (n=1,2,3,4) . (96

The constants S__ are the amplitudes of the scattered waves. Since Equation 26 is also the
asymptotic solution of Equation 23, they must be equal to linear combinations of Equation 25. If
we call the coefficients of the linear combinations P,, we must have

(kn)‘l/Z {exp [_ i(kn r- % [ ‘IT):I d3(m, n) - S_, exp[i(kn r - % an)]}

(n,m=1,2,34). (27)




On the right-hand side, we have used the normalization of Blatt and Weisskopf (Reference 11). If
we equate the coefficients of exp[— ik, r-1/2 lnw)]and exp [i (k,r-1,21, ”7)] in Equation 27, we
obtain

- 2i

P,. a, exp - [i Snj] = }/T(— 8(m, n) ,
n

e (28)

Separation of Equations 28 into real and imaginary parts gives

3

Z':(RPJ.) sin Sn’.— (&P’.) cos an} a,; = é 8(m, n) ,

=

4

Z[(RP’.) cos 8m.+ (&Pj) sinSnj] a, - 0,

) L (29)

4

Z[(RP,.) sinSn’.’r(&P).) coanj] a,; ~ %RSM .

e

4

Z[(RPi) cos 8 . - (&Pj) sin Sn’.:]anj = }/% &Smn .

=1 J

In the above B or & represent the real or the imaginary part of the quantity that follows them.
Equations 29 are a set of 16 linear equations for 16 unknowns RP , 8P, RS_and 4S_. Once these
unknowns are found,* the magnitude of S__ will be given by

[Sanf = (RS,) * (480)" - (30)

*Equations 29 with their present form and without further simplifications are solvable by the computer.



The cross section is obtained by asymptotic expansion in spherical harmonics of the incident
plane wave*

7l/2 1
exp likz] =~ % (21 + 112 i1l lexp [— i(kr -5 Z77>:\

=0

—-np[%kr’%lﬂﬂ}YLo‘ (31)

The magnitude of the ingoing wave on the right-hand side of Equation 27 for n = m is

[km Vi (2Lm + 1)] 172 times the magnitude of the partial wave of the expansion of r exp [ik,n z] . The
plane wave has a flux of v which, in atomic units, is equal to k. The ingoing flux of the right-hand
side of Equation 27 is thereforek ? /[7(21 +1)]. The outgoing flux in the channel n # m is [Spa |? -
The cross section is obtained when we average the ratio of the outgoing flux to the ingoing flux
over the initial states and sum over the final states. For a particular spin state of the two elec-
trons, unpolarized electron beam, and unoriented atoms, the multiplicity of the initial states is
(21, +1) (21,+ 1), where I, and l, are the angular momentum of the bound and free electrons.
For a polarized beam, m, = 0, where m, is the magnetic quantum number of the free electron.
Then m, = M, where m; and M are the bound electron and the total magnetic quantum numbers.
Since M is constant, there is only one initial state for a polarized beam. The multiplicity of the
final states is 2L + 1, where L is the total orbital angular momentum. Since £, =4,, the cross
section for m # n is

an = __7L(2L1)— Ismn|2 (m f l’l)

k2 (21, +1) (32)

The outgoing partial wave in the incident channel m consists of the scattered wave plus the out-
going wave given in the expansion of the plane wave. Then, according to Equation 27 forn = m,
the magnitude of the amplitude of the scattered wave is |1 - Smn| . The elastic scattering cross
section is therefore given by

_ owmlwn)
o (g Sl )

If we define a matrix T by the relation

T = l_s, (34)

*Reference 11, Ch. VIII, Equation 2.7.
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Equations 32 and 33 can then be combined into a single equation,

(2Lt 1)

an:w‘mn

-

(35)

T,, is the transmitted amplitude in the nt* channel due to an incident wave in the m*" channel.

n

The elements of T constitute the transmission matrix.

The matrix S has two properties that are useful as tests on the accuracy of numerical inte-
gration. From Equation 26 it can be seen that S transforms the ingoing wave into the outgoing
waves. The continuity of the electronic current requires that S be a unitary matrix

4
lemntz =1 @1,2,3,4) . (36)
n=1
Furthermore, since the Hamiltonian is Hermetian, S must be symmetric (Reference 11):

Smn = Snm * (37)

Equations 36 and 37 are used as tests on the accuracy of numerical integration.

A Useful Relation

A relation based on the symmetry of the interaction potentials, which serves as another test
on the accuracy of the solutions, can be derived. The I* and the k" solutions of the i*" com-
ponent of u by Equation 23 are given by

~
d2 2 (Zi+l)
dr? tki-1 _rT U T szj“,’l ,
i
C (38)
d2 (ll.'fl) B
[Er_2+ki2_li _—;T Yik 7 Zvijujk .
3 J

Multiplying the first by u, and the second by u,, , subtracting the two expressions, and summing
over i gives

42 d?
E I:uik ar? Yil T Vil g2 uik] - ? Vii [uikujl '“xl“jk] . (39)

11




Since V; = V,,, the interchange of the summation indices changes the sign on the right-hand side

ji?
of the equation; the right-hand side must therefore be zero. Integrating the left-hand side from
zero to infinity, we obtain

" d? d2
[uik 302 Vit TV g uik] = 0. (40)
0

i

Integrating the above equation by parts, and applying Equation 25, we obtain

4
Zki a, a; sin (Bik_gil) =0 (ky1=1,2,3,4k71). (41)
i=1

Although the terms containing the exchange potentials do not cancel out on the right-hand side of
Equation 39, the cancellation does take place after the integration is carried out in Equation 40.

Transmission Matrix According to Born Approximation

The Born approximation consists of neglecting the exchange potential terms appearing in the
v matrix of Equation 23, and also of neglecting all the direct potential terms in this matrix except
those terms that connect the incident channel to all other channels (Reference 12). Equation 23,
when the incident wave is in the mt" channel, reduces to

42 Zn (ln+1)
— tk2- S——— 1|y = 2D _u, (n ® 1,2, 3,4); (42)

u_ and u, are given asymptotically by
u, = km'l/2 sin (kmr—lm—g) ’ (43)

v
u, X kn_l/2 B, cos (kn r- 1, j) : (44)

We have chosen the constants of proportionality of u_ and u_ such that B_ is the Born approxima-
tion of the reactance matrix R (Reference 13).* Equation 43 shows that u_must have the follow-
ing form (Reference 14):

u, = kVIrgy (k1) (45)

*Also Reference 11, Ch. X, Sec. 4.

12




where j, (km r) are spherical Bessel functions. Furthermore, if y  represents the homogenous
solution of Equation 42, it must have the following forms:

Yo - agk i (k.r) . (46)

vy, X a, sin(knr—ln %) , (47)

with a_ some unknown constant. Multiplying Equation 42 on the left by y, and integrating the re-
sult from zero to infinity, we obtain by partial integration

® ® d? Lo (Zn+1)
2 D dr = — +k2- ————
J’O yn nm um r L yn [ dr2 n l_2 un dr

= -kY2a B .
The last equality has been obtained by noticing that y_ and u_ vanish at the origin, and by using
their asymptotic forms as given by Equations 44 and 47. We therefore have

B = = 2k ka) [ iy (k1) Do (k) 57 (49)

This is identical to the expression given for B by Seaton.*

The transmission and the reactance matrices are related by T = - 2iR/(1-iR). Since in the
Born approximation R = B <<1, the transmission matrix according to the Born approximation is
given by

o

TS = 4i(k k,)¥2 j ifn (Ko 1) D, 34, (ko 1) r2dr . (49)
0

Substitution of Equation 49 into 35 would give the cross section according to the Born approxima-
tion. It should be noted that the symmetry of T insures Equation 37 to be satisfied while Equation
36 is no longer satisfied.

*Reference 13, Equation 3.10.
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Elastic Scattering of Electrons by the 2p States of the Hydrogen Atom

The angular momentum of the free electron !, in the 2p channel has the valuesL-1,L,L+1,
where L is the total angular momentum of the system. The first and the last values were consid-
ered in previous sections. The case !, = L corresponds to a wave function in the 2p channel with
a parity different from all channel wave functions considered previously. It therefore corresponds
to elastic scattering. The wave function in this case is given by

+1

) z : u(k, L, r,)
Y ("1' rz) =t +,8P12) lelfll;lo ¢2pml (1'1) r, Yim, (Qz) . (50)

m=-1

When Equation 9 is formed with this wave function, and minimized with respect to u(k , L, r2) ,
treatment which led to the derivation of the four differential equations will give the following dif-
ferential equation:

d? L(L+1) 2
[gr—z T Tt ()

S .

1
+ 2[y0(292p, r) “5Y, (2p2p, r):|uL(r)

3y, (2pk,Lor) 3y, (2pk,L, r):l -y

* 2/3fsz(f>[‘ (LFIy(2L=1) * (2ZL+ 1) (2L + 3) (51)

The asymptotic solution of this equation is given by

u X aLsin(k2r-L77/2+8L) . (52)

If the scattering amplitude is designated by T, , it can be shown from the section on page 8 that
for a particular L

'I'55 = 1 -exp2ié = - 2iexp(id)sind , (53)

where for simplicity we have suppressed the subscript L. The cross section, according to Equa-
tion 35, is given by

4m(2L + 1)

st 3k22 sin2 S . (54)
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The total elastic scattering cross section by the 2p states is the sum of this cross section and
the cross section corresponding to !, = L-1 andi, = L+1 (which were considered previously).

The Born amplitude, Equation 48, in this case is given by

Bys = ~ 2k S i (k, r) Dgg Jp (kyr) r2dr (55)
o
where, by Equation 51,
_ 1 1
Diys = ~ T +ty,(2p2p,1) ~5y,(2p2p, 1) . (56)

NUMERICAL INTERGRATION

Decomposition of the Differential Equations

If it were not for the definite integrals appearing in the potential matrix v, the set of the four
coupled differential equations (23) could be integrated by any standard technique. The presence
of these unknown constants whose integrand involves the unknown functions makes it necessary
to solve these equations by iteration or by transformation of y into other vectors, whose differ-
ential equations do not contain definite integrals. Since the terms containing definite integrals
are small as compared with the direct potentials, the iteration method can be used by assuming
that the values of these integrals are zero. The differential equations are then integrated, the
values of the definite integrals that are subsequently obtained are substituted in the differential
equations, and the integration is repeated. The process is repeated until sufficiently consistent
values of these integrals are obtained. This method is useful if the convergences of the constants
are fast enough, and the cross section is not very sensitive to the values of these constants.

In the second method, the transformation of v fixes the values of the constants and thus
avoids iteration, whereby the computation is reduced considerably. The description of the method
will be given here (Reference 15).*

By making use of Equations 24, Equation 23 can be written

2 1. (1. +1 o
[—dgﬁ +ki2 i (r—; )_J u,; = 2 ; [(Dij +Fij) u’_ + Z: l}; C:;.J , (57)

*Also, Reference 1. This description differs from the description of Reference 15 and the present paper. In Reference 1, v; in Equa-
tion Gl is set to 0; this makes B; ‘,“ = 0, Equations 62 then reduce to a set of homogeneous equations whose determinant must be 0.
Since the amplitude of any of the four components of u can be left arbitrary, one of the Ckl is set equal to 1 and the rest of the con-
stants are found subsequently.
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where

cp = j hf (ryu; (r)dr . (58)
0

We introduce the functions v, and u/! that are solutions of the following differential equations:

d? Ly (li +1) 4
e +ki2_ ———-——rz v, = 2 Z[Dij+Fij]vj , (59)

q? L1, +) . .

as ) I W = ? 1 ;

dr? Tk r2 uf 2 [Dij +Fii} uf T 28(i k) g (60)
i

i i Z4: 24 Zo: kl U;kl . (61)

k=1 =1 v=1

Equation 61 can be verified by multiplying Equation 60 by C}; summing over k, 1, and v; and add-
ing to Equation 53 —whereupon Equation 57 results. Substitution of Equation 61 in Equation 58
gives

4 4

"' —_ l =
[5(1% klv) - Af ]ckvl B
k=1 =1 v=1
(i,j1,2,3,4 p=1,2fori=j=3and i =j =4 =1 otherwise) , (62)
where A<l and B/ are defined by
{os] N
Apkl = J h# ukldr ,
1) 1} )
0
; (63)
B* = J h* v.dr .
1] 1) )
0 J

The numerical integration is carried out by integrating Equations 59 and 60 by any standard
method, calculating Ai’;"l and B# by Equations 63 and, finally, solving the system of 18 algebraic
equations given by Equation 62 to find C};. With the known values of these constants the integra-
tion of Equation 57 is straightforward.
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The determinant of Equation 62 becomes singular for L = 0 and 1. This is shown in Appendix
C. To remove the singularity, some of the C*, are chosen arbitrarily, and the rest of the C*; are
found in terms of the chosen ones.

Solution at the Origin

In order that the four solutions of v be independent of each other, we must have

Z Ciu, # 0 (i=1,234), (64)

where C, are some constants. A necessary condition for this to be satisfied is that the deter-
minant of Equation 64 be nonzero:

| 7 0. (65)

ll”n’

It is not difficult to see that this also is a sufficient condition. At the origin the solution u;; can
be expressed as power series inr,

_ v si+y
uy, < Zaijr , (66)

where a are the coefficients of expansion, and s, are given integers for each component of
and are fixed by the behavior of Equation 23 at the origin. We can satisfy Equation 65 at the origin
by having

Ha,o,
1}

| # 0. (67)

By choosing suitable values of a%, subject to the restriction of Equation 67, four independent

ij

solutions are obtained.

Solution at Large r

With given initial values, the solution of Equation 23 can be extended from origin to any de-
sired value of r. To obtain the asymptotic amplitudes and the phase shifts, the presence of the
centrifugal and long-range potentials makes it necessary to extend the solutions to infinity. This
is undesirable because of the time consumption on the computer, and the accumulated error due
to the long-range integration. Seaton (Reference 13) has solved the problem of r~2 long-range
potentials occurring in the off-diagonal terms of the potential matrix v by diagonalizing the
asymptotic form of the differential Equation 23 and the corresponding S-matrix. By an inverse
transformation the elements of the original S -matrix are found.
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Instead, we develop here a perturbation theory which is based on the method described by
Mott and Massey (Reference 16). The error in the resulting solution is inversely proportional to
the square of the distance from the origin.

Equation 23 for large distances of r can be written

2
[di ! “n’}“(“n Lor) = ek, Lx) (68)

where U is the sum of the centrifugal potential matrix and the asymptotic form of the v matrix.
The elements of u are given in Appendix D. A component of Equation 68 is of the following form:

_‘ﬁ + k2 =
ok a) = )

(69)
g(r) << kZu(r) (g(r) -0as r ~ oo) .

The perturbation theory is applied between some large distance R and infinity. Suppose u vanishes
atR; then we have the following boundary condition:

u(R) = 0. (70)
If we represent the solution of the homogenous equation by y(r), at infinity, we must have

y(r) = asin(kr~-kR) ,

(71)

il

u(r) (atda)sin(kr-kR+7) ,

where a is the amplitude of u(r) if g(r) were identically zero and AA and n are generated by
g(r). Since g(r) is small, we can write

u = oyt (72)
where ¢ is a small function. Substitution of Equation 72 in Equation 69 gives

f;(y%) = )y . (13)

where, upon double integration, we obtain

{ = Id_;I g(r' )ydr’ . (74)
R Y R

The constants of integrations are fixed by the condition (70) and the fact that u’ (R) = y' (R).
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We pow integrate Equation 74 by parts,

¢ = [J: g(f)yd{l [Lrj—:}‘ J: g(r)ydr J:% . (75)

When the integration with respect to y is carried out, and the result is substituted in Equation 73,
we obtain

u(r) = sin(kr—kR)l:ai'%J’ g(r)cos(kr-kR)dr]
R

+ cos (kr ~ kR) {} %I g(r) sin (kr - kR) drjl . (76)
R
Comparison of the second of Equations 71 and 76 shows that
1 (o2]
fa = T J. g(r) cos (kr —kR) dr ,
R
" (17)
1 (7 .
T -k I g(r) sin (kr ~kR) dr
R

7

to first order. The functions g(r) in the four differential Equations 68 are given by

g, (r) = 2 Z Uy . (78)

i

To first order this can be written by
g, (r) = ZZ a, U;; sin (kj r-k; R]) , (79)
i

where R, is the last zero of u; with positive slope. Substitution of this equation in Equation 77
gives

a. R.
ba, = - Zﬁj.lcos(kir-kiRi)UijSin (kjr-ij!.)dr . l
i

- (80)

1}

. R.
Z%J’ in (kif_ki Ri) U, sin (k’.r—ijj) dr .

3 J
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ba; and 7, can easily be calculated by substituting the values of U from Appendix D, integrating
the resulting integrals by parts, and retaining the leading terms.

The asymptotic amplitudes and phase shifts are given by

a, (®) = a,(R,) +da, ,

" (81)
8, () = 8, (R) *m *[L-8(i, H+sG, 9] 5

where a, (R;) and 5, (R;) are the amplitudes and total phase shifts calculated at R, by the ma-
chine, and where 5(i, 3) and (i, 4) are the ¢ functions.

Details of the Numerical Integration

Milne's (Reference 17) method with variable mesh size and Simpson's* rule were used for
the integration of the differential equations and evaluations of the integrals respectively. As the
solution advances from the origin, the differential equations become less sensitive to the size of
the increment, and the error of integration falls below certain small number <. At each value of
r the value of the function is found, first with the given value of the increment, and second with
the value of increment divided in half. The error of integration is defined as the difference be-
tween these two solutions. When the error becomes small, the increment is doubled until a
maximum value is reached. At some distance R, all the exchange potentials and, similarly, all
the direct potentials except those representing optically allowed transitions and the 2p - 2p elastic
scattering potential become vanishingly small (see Appendix D). At this distance the set of dif-
ferential equations is replaced by the simpler set containing only these potentials. The integra-
tion is continued until some distance R,, where the first-order solution of the rest of the range of
integration is obtained by the method developed in the previous section. No attempt was made to
solve any set of linear equations or any matrix equations, as these equations are solvable by the
computer in their original form.

The values of the constants of the numerical integration are given below; h, and h, are the
initial and the final increments of integration. In some exceptional cases, different values were
used.

h; = 1x 1078
h, = 0.05

e = 1x 1074
R, = 30

R, = 200

(All quantities are in units of Bohr radius except ¢, which is dimensionless.)

*Reference 17, Sec. 33.
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RESULTS AND DISCUSSION

The differential equations (23) with the known values of the elements of the potential matrix
v as given in Appendix B were integrated numerically by the methods described in the last sec-
tion. By choosing different values for the determinant (Equation 67) different sets of independent
solutions can be generated. The cross sections reported in this paper have been obtained by
averaging the cross sections obtained from two independent sets of solutions. To test the ac-
curacy of the numerical integration, we define the three quantities D__, D’ ,andD ' given by

Z‘ |
ki aim ainSin (Sim - 5in)
i=1

D, * 4 (m,n=1,2,3,4, m#n), (82)

Z k; a;,a;,|sin (Bim - 8in)

i=1
!Smn—snml
D = S0] + [Sucl (mn=1,234 mn#n), (83)
l 4

) ISl

D) = S m=1,23 4). (84)

4
L[5l
n=1

Based on Equations 36, 37, and 41 in an exact solution of the four differential equations, the right-
hand side of these equations would vanish; they can therefore be used to test the accuracy of the
numerical integration. As an illustration the numerical values of D__, D', and D' for the case

of 1s-2s-2p coupling, 8 =+1,%, = 2.0, and L = 3, are given below:

D, = 1.4x 1073, D, = 2.6x 107%, D, = 1.3x 1073,
D,, = 5.1x 107%, D,, = 2.2x 1073, D,, = 1.8x 1073,
D), = 7.6x 107%, D, = 51x 1073, D, = 56x 1073,
D), @ 5.4x 1073, D, = 5.7x 1073, D, = 1.3x 1073,
D = 1.8x107*, DS = 7.6x10%, Dy = 25x107%, D' = 4.4x 107 .

To compare the results of the numerical integration by the noniterative method we have
carried out here with those of the iterative method of References 2, 4, and 5, we have provided
Table 1.* The 1s-~ 2s excitation cross section is given by the two methods; I and II refer to the

*Author is indebted to Dr. K. Smith for sending some of the data used in Table 1.
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Table 1 iterative and noniterative methods,

Comparison of the Iterative and the Noniterative Results respectively; and E_, is the maxi-
for the Singlet (L= 0, 1; k, = 0.9,1.0),1s ~ 2s Excitation mum of the error to value ratios in
Cross Section.* the reciprocity relations (Equation
(a) 1s - 2s coupling 83). In the 1s - 2s eigenstates
K L Q,, s E_ .. (percent) coupling approximation the non-

' 1 I 1 191 iterative method is far more ac-
0.90 0 0.0384 0.0375 7.1 0.72 curate than the iterative method
1.00 0 0.0714 0.0725 unknown 0.53 and, as is seen, the cross sections
0.0 1 0.008 0.0017 386 0.91 by the two methods differ from each
1.00 1 0.051 0.0583 55 0.75 . . . .

other sometimes in their first
(b) 1s - 2s - 2p coupling significant figure. In the 1s - 2s- 2p
k, L Qyy =24 E..x (percent) eigenstates coupling approximation,
3 | I 1 I on the other hand, the results by
0.90 0 0.0529 0.523 0.40 0.40 the iterative method seems to be
1.00 0 0.0766 0.0768 0.12 0.60 somewhat more accurate. The
0.90 1 0.0045 0.0048 2.3 10 R .
1.00 1 0.0145 0.0147 0.33 1.3 reason is contributed to the.effect
*1 and Il refer to iterative and noniterative methods, respectively; E o is the of the r”? long-range potential,
maximum of the error to value ratios in the reciprocity relation. which appears in the differential
tSee Reference 2. . c s
1See References 4 and 5. equations when the 2p state is in-

cluded in the eigenstates coupling
approximation. Two different methods are used in References 4 and 5 and in the present paper
to estimate the effect of this potential for large distances; and it may be that in References 4 and
5 this effect is better taken into account. Nevertheless the cross sections are the same in their
first three decimal places.

In Figure 1 we present the theoretical and the experimental estimate of the 1s - 2s excitation
cross section. The calculated curves are Born, 1s - 2s coupling, 1s - 2s - 2p coupling exchange
neglected, and 1s - 2s - 2p coupling exchange included approximation. The first three of these
curves are the same as References 4 and 5. The experimental curves are those of Lichten and
Schultz (Reference 18) and Stebbings, Fite, and Hummer (Reference 19). The various calculated
results agree better with the results of Lichten and Schultz. However, recent calculations of
Taylor and Burke (Reference 20) have shown that, in an eigenstates expansion calculation where
1s, 2s, 2p, 3s, and 3p are included, the cross section at the peak of the 1s - 2s - 2p curve is re-
duced by 30 percent. This suggests that, within the eigenstates expansion approximation, more
states should be included to insure that the convergence has been achieved; and the discrepancy
between the two experimental results is still an unresolved problem. As another theoretical ap-
proach to the problem, H. L. Kyle and A. Temkin (Reference 21) have extended the nonadiabatic
theory of scattering developed by A. Temkin (Reference 22) to the L = 0, 1s~2s inelastic scatter-
ing of electrons by the hydrogen atom. They find a 30 percent decrease in the 1s - 2s cross section
as calculated by the 1s - 2s close coupling approximation.

Comparison of the exchange neglected and exchange included 1s - 2s - 2p coupling shows that
exchange is mostly important at threshold, and its effect does not extend beyond 20 electron volts.
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Table 2 gives the numerical values of 08

the 1s ~ 2s cross sectionin different approxi-
mations. The 1s —~ 2s excitation cross section 0.7k
in the singlet state has an interesting be-
havior immediately above threshold. In 06l
Figure 2 this cross section for a range of
600 milli electron volts (mev) above {:5 05k
threshold is plotted. In the 1s -2s coupling it
approximation a maximum appears at 34 2
mev, while in the 1s-2s-2p coupling ap- ‘% 04
proximation there are three maxima of g,
approximately the same magnitudes at 17, g 03r
34, and 87 mev, respectively. In the singlet
case the cross section rises sharply within 021
a range of 17 mev above threshold to a value
of about 0.047 a2 it then rises with an ap- 0.1 EXP. ( Lichten & Schultz )
proximately constant and small slope. The EXP. ( Stebbings et al.)
contribution of the triplet case is seen to be % é 10 1'5 210 215 3'0 315 4% 415 510 55
almost negligible at the threshold, and it has ELECTRON ENERGY (ev)
no maximum in this region. It should be
. . . Figure 1 —1s— 25 total excitation cross section. (Is - 2s
noted that the principal maximum in the re?:rs to ls-2s. eigenstates coupling approximation;
1s ~2s excitation cross section appears at lic_hZ:;ezfegfécs;;' ':;s:':-"‘;'(‘)';ii isEﬁ;e ';fg';-p F’::i‘;:};‘_’
about 3 ev with a value of about 0.35, and has tion, and EXP. refers to experiment.)

a contribution from a higher angular mo-

mentum than L = 0. Although no study has

been made to relate the existence of the maxima above threshold to any physical phenomena, it
may be said that, similar to resonances below threshold in the elastic scattering of electrons by
the hydrogen atom, these maxima are due to formation of some unstable states of the negative
hydrogen ion. The numerical values of the 1s - 2s cross section at threshold are given in Table 3.
Damburg and Peterkop (Reference 6), and Gailitis and Damburg (Reference 23) have made an
extensive study of the behavior of different cross sections near threshold in the is - 2s and the
1s - 2s - 2p eigenstates coupling approximations.

In Figure 3 we have shown the 2s - 2s elastic cross section. The 1s- 2s coupling approxima-
tion gives a value of 944 a2 at zero incident energy, while the corresponding value in the Born
approximation is 768+ a2. The high value of this cross section at zero energy is in sharp con-
trast with its geometrical cross section. The zero energy 2s—~2s cross section in the 1s - 2s - 2p
coupling approximation, because of the r~2 potential, is difficult to find. The 2s—2s cross section
has certain maxima and minima at low energy which are not found in the 1s-1s cross section.
Figure 4 shows the L = 0 singlet and triplet 2s - 2s cross section in the two approximations. While
there is one minimum in the 1s - 2s coupling approximation, there are three minima in the
1s - 2s - 2p coupling approximation. It is thought that the existence of these minima is due to a

wider potential range in the 2s ~2s scattering, a case which does not exist in the 1s-1s
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Table 2

1s - 2s Excitation Cross Section.

(a) Born approximation
Kk, L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 2 QT
0.9 | 0.16376 | 0.00981 | 0.00021 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.17378 | 0.17379
1.0 | 0.19578 | 0.04795 | 0.00428 | 0.00026 | 0.00000 | 0.00000 | 0.00000 [ 0.00000 | 0.24827 | 0.24827
1.1 | 0.16272 | 0.07073 | 0.01141 | 0.00125 | 0.00011 | 0.00001 | 0.00000 | 0.00000 | 0.24622 | 0.24623
1.2 | 0.12704 | 0.07896 | 0.01858 | 0.00299 | 0.00039 | 0.00004 | 0.00000 | 0.00000 | 0.22800 | 0.22800
1.5 | 0.05872 | 0.06606 | 0.02979 | 0.00939 [ 0.00242 | 0.00053 | 0.00010 | 0.00002 | 0.16703 | 0.16706
2.0 | 0.01946 | 0.03363 | 0.02521 | 0.01365 | 0.00614 | 0.00236 | 0.00081 | 0.00025 | 0.10151 | 0.10187
3.0 | 0.00388 | 0.00909 { 0.01019 | 0.00866 | 0.00628 | 0.00394 | 0.00226 | 0.00116 | 0.04546 | 0.04758
4.0 | 0.00123 | 0.00320 | 0.00420 | 0.00431 | 0.00385 | 0.00301 | 0.00216 | 0.00141 | 0.02337 | 0.02720
(b) Exchange neglected 1s - 2s - 2p eigenstates coupling approximation
k, L=0 L=1 L=2 L=3 L=14 L=5 L=6 L=7 b3 Q
0.9 | 0.2202 0.0749 0.3535 - - - - - 0.6486 0.6486
1.0 | 0.1685 0.1427 0.1598 0.0517 - - - - 0.5227 0.5227
1.1 | 0.0951 0.1142 0.0298 0.0616 0.,0231 - -- - 0.3238 0.3238
1.2 | 0.0594 0.1137 0.0032 0.0360 0.0244 0.0135 -— -- 0.2502 0.2502
1.5 | 0.0249 0.0861 0.0201 0.0068 0.0112 0,0118 0.0074 -- 0.1683 0.1683
2.0 | 0.0101 0.0373 0.0255 0.0107 0.0046 0.0034 0.0033 -- 0.0949 0.0953
(c) 1s - 2s eigenstates coupling approximation

Singlet
Kk, L= L=1 L= L=3 L=4 L=5 L=6 L=7 Zg -
0.9 | 0.0375 0.0017 0.0000 0.0000 0.0000 0.0000 0.0000 -- 0.0392 —-—
1.0 | 0.0725 0.0583 0.0002 0.0000 0.0000 0.0000 0.0000 - 0.1310
1.1 | 0.0701 0.0525 0.0023 0.0000 0.0000 0.0000 0.0000 - 0.1249
1.2 ] 0.0547 0.0534 0.0054 0.0002 0.0000 0.0000 0.0000 - 0.1137
1.5 | 0.0241 0.0384 0.0110 0.0022 0.0004 0.0001 0.0000 - 0.0762
2,0 | 0.0072 0.0157 0.0093 0.0041 0.0015 0.0005 00002 -- 0.0385

Triplet S+ T, Q,
k; L= L= L=2] L=3] L=4] L=5] L=6] L=7 2p
0.9 | 0.0004 | 0.1686 | 0.0060 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | -- 0.1750 | 0.2142 0.2142
1.0 | 0.0021 | 0.1528 | 0.0446 | 0.0021 | 0.0001 | 0.0000 | 0.0000 | -- 0.2017 | 0.3327 0.3327
1.1 | 0.0044 | 0.1052 | 0.0568 | 0.0068 | 0.0005 [ 0.0000 [ 0.0000 | —- 0.1737 | 0.2987 0.2987
1.2 | 0.0061 | 0.0737 | 0.0576 | 0.0114 | 0.0015 | 0.0002 | 0.0000 | -- 0.1505 | 0.2642 0.2642
1.5 | 0.0073 | 0.0355 | 0.0406 | 0.0174 | 0.0050 | 0.0012 | 0.0002 | -- 0.1072 | 0.1833 0.1833
2.0 | 0.0049 | 0.0162 | 0.0205 | 0.0143 | 0.0074 | 0.0032 | 0.0012 | -- 0.0677 [ 0.1062 0.1068

(d) 1s - 2s - 2p eigenstates coupling approximation

Singlet
Kk, L= L= L=2 L=3 L=4 L=5 L=6 L=7 g -—-
0.9 | 0.0523 0.0048 0.0620 - -— -- -— - 0.1191 -—
1.0 | 0.0768 0.0147 0.0833 0.0092 - - - - 0.1840
1.1 | 0.0585 0.0245 0.0647 0.0236 0.0055 - - - 0.1768
1.2 | 0.0382 0.0251 0.0246 0.0252 0.0081 0.0028 - -- 0.1240
1.5 | 0.0123 0.0308 0.0015 0.0041 0.0051 0.0034 0.0023 0.0026 0.0621
2.0 | 0.0049 0.0152 0.0068 0.0021 0.0010 0.0010 0.0011 0.0008 0.0329
3.0 | 0.0010 0.0031 0.0031 0.0023 0.0015 0.0009 0.0005 0.0006 0.0130
4.0 | 0.0003 0.0010 0.0012 0.0012 0.0010 0.0008 - - 0.0055

Triplet S+ 3 Q
k, | L= L= L= L-3 | L-4 | L=5] L=6 | L=7 D T !
0.9 | 0.0013 | 0.0748 | 0.0019 | -- - - -- - 0.0780 | 0.1971 0.1971
1.0 | 0.0040 | 0.1224 | 0.0195 | 0.0214 | -- - -- - 0.1673 | 0.3513 0.3513
1.1 | 0.0050 | 0.1013 | 0.0326 | 0.0077 | 0.0131 | —- - - 0.1597 | 0.3366 0.3366
1.2 | 0.0055 | 0.0724 | 0.0359 | 0.0036 | 0.0105 | 0.0076 | -- - 0.1355 | 0.2596 0.2596
1.5 | 0.0045 | 0.0333 | 0.0309 | 0.0072 | 0.0046 | 0.0054 | 0.0049 | 0.0043 | 0.0951 | 0.1573 0.1573
2.0 | 0.0031 | 0.0155 | 0.0176 | 0.0101 | 0.0044 | 0.0025 | 0.0023 | 0.0019 | 0.0574 | 0.0903 0.0907
3.0 | 0.0013 | 0.0048 | 0.0065 | 0.0059 | 0.0044 | 0.0029 | 0.0018 | 0.0012 | 0.0288 | 0.0418 0.0439
4.0 | 0.0006 | 0.0019 | 0.0028 | 0.0030 | 0.0027 | 0.0022 | -- -= 0.0132 | 0.0187 0.0261
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Figure 2 —L = 0, 1s — 2s excitation cross section above threshold. (The cross sections are given for the two spin states
singlet and triplet, and for the two a;:proximaﬁons Is =2s and 1s - 25 -~ 2p. The total cross section is the sum of the
*

singlet and the friplet cross sections.

scattering. In Table 4 we have listed the nu-
merical values of the 2s-2s cross section in
different approximations.

In Figure 5 the four calculated curves for
the 1is-2p excitation cross section are com-
pared with the measurement of Fite, Stebbings,
and Brackmann (References 24 and 25). The
1s- 2s - 2p and the Born curves are the same as
in References 4 and 5, but the 1s-2s-2p ex-
change neglected and the 1s - 2p curves are not
calculated in these references. As concluded
before, the calculated curves are higher than
the experimental. Moreover, we notice that,
similar to the 1s—~2s excitation cross section,
the inclusion of the exchange lowers the value
of the cross section at threshold. Table 5 gives
the numerical values of the 1s-2p cross sec-~
tion in different approximations.

The calculation of the 2p—2p elastic
cross section is more complicated than the
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Figure 3—2s - 2s total elastic cross section. (Curves
are designated as in Figure 1.)

*According to Gailitis and Damburg, when the energy difference between the 2s and 2p states is neglected in the 1s-2s-2p couplings,
the Is — 2s excitation cross section does not go to zero at threshold (see Reference 23, and Figure 2). Figures 2 and 4 show that in
the 1Is-2s-2p couplings, if E, -; and E, represent the energy with respect to the threshold of the two neighboring maxima or minima
thenE, /E, -1 ¥ constant. This maybe attributed to the r 2 potential, which is due to the coupling between the 2s and the 2p states.

For further details, see Reference 23.
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Table 3

The Singlet L = 0, 1s - 2s Excitation Cross Section Near Threshold.*

k, 0 0.01 0.02 0.025 0.030 0.035 0.04
E(mev) 0 1.36 5.44 8.50 12.2 16.7 21.8
Q, 0 0.0168 0.0298 - 0.0377 - 0.0423
Q, 0 - 0.0149 0.0259 0.0349 0.0405 0.0353
k, 0.045 0.050 0.060 0.070 0.080 0.090 0.100
E(mev) 27.5 34.0 49.0 66.6 87.0 110. 136.
Q, - 0.0446 0.0441 0.0435 0.0423 0.0412 0.0405
Q, 0.0346 0.0405 0.0391 0.0361 0.0395 0.0392 0.0385

*k2 is the wave number of the inelastically scattered wave, and E is the corresponding energy in mev; Q| and Q; are the cross sec-
tions according to the 1s - 2s and the Is - 2s - 2p couplings, respectively.
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Table 4
2s ~ 2s Elastic Cross Section.

(a) Born approximation

k, L=20 L=1 L=2 L=3 L=4 L=5 L=6 L=7 2 Q
0.24 | 389.97 15.910 0.27680 | 0.00319 | 0.00003 | 0.00000 | 0.00000 | 0.00000 ; 406.16 406.17
0.50 | 105.52 32.129 5.0152 0.55306 | 0.04846 | 0.00347 | 0.00022 | 0.00001 | 143.269 | 143.276
0.68 | 47.381 24,746 7.4981 1.7023 0.31602 | 0.04869 | 0.00658 | 0.00078 | 81.700 81.703
0.83 { 26.562 17.895 7.5601 2.5080 0.69820 | 0.16365 | 0.03393 | 0.00621 | 55.427 55.440
1.23 | 8.2461 7.6846 4.9702 2.7483 1.3500 0.57745 | 0.22452 | 0.07803 | 25.879 25.990
1.80 | 2.4331 2.7773 2.2763 1.6805 1.1541 0.71994 | 0.41776 | 0.22120 | 11.680 12.105
2.87 | 0.5245 0.71381 | 0.68903 | 0.61123 | 0.51876 | 0.41048 | 0.31076 | 0.21860 | 4.0011 4.8280
3.91 | 0.18794 | 0.27611 | 0.28658 | 0.27339 | 0.25098 | 0.21580 | 0.17946 | 0.14029 | 1.8106 2.7417
(b) Exchange neglected 1s - 2s - 2p eigenstates coupling approximation
k, L=0 L=1 L=2 L=3 L=4 L=35 L=6 L=17 2 Qy
0.24 | 32.02 8.489 42.26 - - - - - 82.77 82.78
0.50 | 2.041 7.710 23.35 9.004 9.368 7.702 5.870 - 65.045 65.052
0.68 | 2.255 8.247 15.16 5.547 4.373 3.755 2.975 - 42.312 42316
0.83 | 1.861 8.206 10.67 4.637 2.792 2.223 1.818 - 32.207 32.226
1.23 | 1.716 4.987 5.030 3.321 1.797 1.058 0.7179 - 18.537 18.726
1.80 | 1.020 2.134 2.150 1.750 1.275 0.8320 0.5457 - 9.707 10.352
(c) 1s - 2s eigenstates coupling approximation

Singlet
k, L=0 L= L=2 L=3 L=4 L=5 L=6 L=7 Zg -—
0.24 | 0.3303 8.196 0.2628 0.0028 - - —-— ~ 8.792 -
0.50 | 1.532 10.38 0.0275 0.0048 0.0008 0.0002 0.0249 - 11.97
0.68 | 1.115 5.536 1.502 0.1150 0.0087 0.0010 0.0017 - 8.279
0.83 | 0.8980 3.512 1,997 0.4303 0.0747 0.0129 0.0032 - 6.928
1.23 | 0.5702 1.413 1.236 0.7010 0.3129 0.1228 0.0450 - 4.401
1.80 | 0.2825 0.5370 0.5285 0.4193 0.2931 0.1863 0.1110 - 2.358

Triplet 3+ 3, Q,
k, L=0]| L= L-2| L=3 [ L=4| L=5| L=6 | L=7]| 2
0.24 | 45.94 118.8 7.713 0.0540 | -—- — - - 172.51 | 181.30 181.31
0.50 | 0.2102 | 34.44 21.05 2.776 0.2521 | 0.0316 [ 0.0994 | -- 58.86 | 70.83 70.84
0.68 | 1.366 18.13 12.74 4.059 0.8282 | 0.1463 | 0.0442 | -- 37.31 | 45.60 45.60
0.83 | 2.112 11.65 8.725 3.887 1.230 0.3225 | 0.0850 | ~- 28.01 | 34.94 34.96
1.23 | 1.811 4.691 4,008 2.585 1.399 0.6637 | 0.2862 | —- 15.44 | 19.84 20.03
1.80 | 0.8989 | 1.735 1.652 1.316 0.9510 | 0.6359 | 0.4008 | —- 7.590 | 9.947 10.592

(d) 1s - 2s - 2p eigenstates coupling approximation

Singlet
k, L=0 L= L=2 L=3 L=4 L=5 L=6 L=7 2 -—
0.24 | 7.800 14.79 22.42 - - -— - - 45.01 -—
0.50 | 0.2858 0.6960 3.149 4.447 2.925 2.063 1.491 - 15.057
0.68 | 0.0661 1.044 2.455 1.884 1.480 1.098 0.7928 - 8.820
0.83 | 0.1675 1.088 2.105 0.9905 0.8282 0.6606 0.5071 - 6.347
1.23 | 0.3739 1.075 1.196 0.7196 0.3940 0.2496 0.1827 0.1409 4.332
1.80 | 0.2416 0.4974 0.5133 0.4133 0.2923 0.1928 0.1247 0.0799 2.3553
2.87 | 0.0847 0.1489 0.1574 0.1466 0.1280 0.1057 0.0852 0.0658 0.9223
3.91 | 0.0365 0.0635 0.0702 0.0698 0.0660 0.0599 - - 0.3659

Triplet 5, + 3, Q,
k, L=04{ L= L=2| L=3 | L=4 | L=5| L=6| L=7 Zy
0.24 | 16.52 1.236 89.65 - - - - - 107.41| 152.42] 152.43
0.50 | 6.172 17.19 30.69 12.90 5.559 5.373 4.257 - 82.14 97.206| 97.213
0.68 | 2.346 12.88 14.52 7.937 3.046 2.459 2.090 - 45.28 54,099 54.103
0.83 | 1.709 9.166 8.976 5.367 2.365 1.514 1.246 - 30.343 | 36.686 36.705
1.23 | 1.391 4.199 3.880 2.681 1.585 0.9110 | 0.5658 | 0.4094 | 15.622| 19.955| 20.066
1.80 | 0.7898 | 1.656 1.603 1.291 0.9466 | 0.6520 | 0.4305 | 0.2786 | 7.648 10.002 | 10.427
2.87 | 0.2622 | 0.4652 | 0.4857 | 0.4479 | 0.3901 | 0.3234 | 0.2623 | 0.2045 | 2.8413| 3.7636| 4.5905
3.91 | 0.1113 | 0.1945| 0.2146 | 0.2122 | 0.2000 | 0.1812 | -- - 1.1138| 1.4797] 2.7306
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Table 5

1s - 2p Excitation Cross Section.

(a) Born approximation

Kk, L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=17 2 Qr
0.9 | 0.00107 | 0.46700 | 0.09607 | 0.01025 | 0.00087 | 0.00007 | 0.00001 | 0.00000 | 0.56534 | 0.57535
1.0 | 0.00499 | 0.48867 | 0.35645 | 0.13467 | 0.03964 | 0.01032 | 0.00254 | 0.00059 | 1.03787 | 1.03851
1.1 | 0.00702 | 0.36207 | 0.41698 | 0.24992 [ 0.11533 | 0.04649 | 0.01753 | 0.00624 | 1.22158 | 1,22859
1.2 | 0.00747 | 0.25540 | 0.38137 | 0.29903 | 0.17908 | 0.09269 | 0.04453 | 0.02004 | 1.27961 | 1,30741
1.5 | 0.00550 | 0.09184 | 0.,19986 { 0.23775 | 0.21386 | 0.16292 | 0.11291 | 0.07232 | 1.09696 | 1.28101
2.0 | 0.00234 | 0.02222 | 0.05938 | 0.09386 | 0.11287 | 0.11376 | 0.10248 | 0.08374 { 0.59065 | 1.04055
3.0 | 0.00048 | 0.00285 | 0.00806 | 0.01537 { 0.02309 | 0.02920 | 0.03271 | 0.03273 | 0.14449 | 0.66256
4.0 0.00013 0.00066 | 0.00179 0.00359 0.00586 0.00816 0.01009 0.01114 | 0.04142 0.45252
(b) Exchange neglected 1s - 2s - 2p eigenstates coupling approximation
k, L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 3 Qr
0.9 | 0.1600 0.3985 0.6497 -— - -- - - 1.2082 1.2194
1.0 | 0.1007 0.2917 0.8190 0.2190 0.0476 0.0224 -~ -- 1.5004 1.5041
1.1 0.0980 0.2008 0.6201 0.3696 0.1380 0.0586 0.0166 - 1.5017 1.5150
1.2 0.0822 0.1251 0.4481 0.3922 0.2044 0.1014 0.0403 - 1.3937 1.4416
1.5 0.0372 0.0334 0.1671 0.2568 0.2295 0.1706 0.1136 - 1.0082 1.2645
2.0 0.0105 0.0068 0.0394 0.0837 0.1089 0.1165 0.1042 - 0.4700 1,0036
(c) 1s - 2p eigenstates coupling approximation

Singlet
k, L=90 L= L=2 L=3 L=4 L=5 L=6 L=7 ZS -
0.9 0.0044 0.1216 0.1422 - - - - - 0.2682 -_—
1.0 0.0168 0.0655 0.3011 0.0206 0.0057 0.0059 - -— 0.4156
1.1 | 0.0299 0.0366 0.3948 0.0851 0.0260 0.0099 0.0060 - 0.5883
1.2 | 0.0296 0.0169 0.3088 0.1421 0.0517 0.0236 0.0103 -- 0.5830
1.5 | 0.0059 0.0037 0.0821 0.0989 0.0718 0.0458 0.0304 - 0.3386
2.0 | 0.0010 0.0006 0.0131 0.0271 0.0327 0.0335 0.0296 - 0.1376

Triplet zs + Er Q
k, L-0 L= L=2 L=3 L=4 | L=5 | L=6| L=7] 2 !
0.9 0.0002 0.2066 0.0005 - - - - - 0.2073 | 0.4755 | 0.4867
1.0 0.0016 0.1078 0.0020 0.1651 0.0363 0.0187 - - 0.3315 | 0.7471 | 0.7508
1.1 0.0037 0.0540 0.0060 0.1599 0.1002 0.0365 0.0217 | -~ 0.3820 | 0.9703 | 0.9836
1.2 0.0055 0.0249 0.0098 0.1446 0.1336 0.0695 | 0.0341 | —- 0.4220 | 1,0050 | 1.0529
1.5 0.0059 0.0027 0.0133 0.0868 0.1231 0.1100 | 0.0849 | -~ 0.4267 | 0.7652 | 1.0215
2.0 | 0.0028 0.0002 0.0073 0.0311 0.0559 | 0.0700 | 0.0772 | —- 0.2445 | 0.3820 | 0.9156

(d) 1s - 2s - 2p eigenstates coupling approximation

Singlet
k, L= L=1 L= L=3 L=4 L=5 L=6 L=7 P ——-
0.9 | 0.0390 0.0745 0.1027 - - - - - 0.2162 -—-
1.0 | 0.0360 0.1123 0.2575 0.0317 - - - - 0.4375
1.1} 0.0358 0.1094 0.3405 0.0886 0.0308 0.0113 0.0075 - 0.6239
1.2 0.0345 0.0806 0.2912 0.1278 0.0506 0.0237 0.0105 - 0.6189
1.5 | 0.0172 0.0175 0.0953 0.1003 0.0693 0.0440 0.0290 0.0238 0.3964
2.0 | 0.0036 0.0023 0.0170 0.0303 0.0344 0.0333 0.0293 0.0229 0.1731
3.0 0.0004 0.0002 0.0015 0.0037 0.0060 0.0078 0.0094 0.0106 0.0396
4.0 | 0.0001 0.0001 0.0003 0.0008 0.0014 0.0020 -- -- 0.0047

Triplet v+ 3, Q
k, | L=0 | L= L=2 L=3 L=4| L=5| L=6| L=7| 3 !
0.9 0.0007 0.0682 0.0112 - - - - - 0.0801 [ 0.2963 | 0.3075
1.0 0.0033 0.0801 0.0500 0.1730 - -- - - 0.3064 | 0.7439 | 0.7976
1.1 0.0070 0.0626 0.0567 0.1841 0.1082 0.0404 | 0.0209 | -~ 0.4799 | 1.1039 | 1.1172
1.2 0.0096 0.0418 0.0537 0.1761 0.1409 | 0.0729 | 0.0332 | -- 0.5282 | 1,1471 ; 1.1950
1.5 0.0107 0.0131 0.0351 0.1081 0.1343 0.1157 0.0842 | 0.0596 | 0.5608 | 0.9570 | 1.1410
2.0 0.0053 0.0038 0.0143 0.0393 0.0625 | 0.0731 0.0738 | 0.0642|0.3363 | 0.5094 | 0.9593
3.0 0.0010 0.0006 0.0025 0.0066 0.0122 | 0.0175 | 0.0220 | 0.0246 |0.0870 | 0.1266 | 0.6095
4.0 0.0002 0.0002 0.0006 0.0016 0.0031 | 0.0048 | -- --= 0.0105 | 0.0152 | 0.4475
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Figure 5 —1s — 2p total excitation cross section. (Is - 2p
refers to 1s - 2p eigenstates coupling approximation;
1s = 2s - 2p has similar meaning. EX. NEGL. refers to
exchange neglected case, BORN is the Born approxima-
tion, and EXP. refers to experiment.)

cases so far considered. For a given total
angular momentumL, the angular momentum
of the partial wave which is scattered from
the 2p state may beL-1,L,andL+1. The
first and the third values correspond to a
wave function which has the same parity as
the wave functions in the 1s and the 2s chan-
nels; in this case,L-4, -£, is even. The
second value corresponds to a wave function
with a different parity, and the only process
that occurs with this parity is the 2p elastic
scattering; in this case,L -4 -4, is odd.

We have calculated the 2p-2p cross sections
for the two cases, and they are listed in
Table 6. The total cross section is shown

in Figure 6 (on page 33). Because of the 2
potential it is difficult to find the zero energy
value of this cross section,

The 2s - 2p transition cross section has application in some plasma and stellar atmosphere
calculations. The total cross section using the Born approximation is given by Seaton (Reference
26). In Table 7 (on page 32) we list the partial cross section using the close coupling approxima-
tion. This table may be found useful in problems in which plasma shielding occurs, where only
electrons with an impact parameter with a given range can induce the 2s- 2p transition.

It may be noted that the cross sections for the inverse processes 2s—~1s,2p~1s, and 2p—2s
may be calculated by Equation 35 and the symmetry of the T-matrix.

In all the tables listed here, k, is the wave number in the 1s, and k, is the wave number in
the 2s or the 2p channels. The energy, in electron volts, of the incident electron in each channel
is given by E = 13.6 k?, where k could be k, or k,. All cross sections are in units of nal. In the
different tables, = is the sum of the partial cross sections calculated. The total cross section Q; is
obtained by adding the contribution of higher partial waves than those calculated using the regular
Born approximation; this could easily be done with the help of the table of the Born approximation.

CONCLUSION

The noniterative technique employed here can be applied to a large class of problems containing
exchange integrals. The method is particularly useful when the exchange potential is comparable to
the direct potential, in which case the convergence of iteration is slow.
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Table 6

2p - 2p Elastic Cross Section.

(@ L -4, -4, odd, Born approximation

k, L=1 L=2 L=3 L=4 L=5 L=6 L=7 2
0.24 26.562 6.1961 2.1260 0.92680 0.44497 0.22694 0.08105 36.56
0.50 14.210 5.2190 2.1768 1.0526 0.55433 0.31476 0.18383 23.71
0.68 8.8346 4.0761 1.9476 1.0100 0.54983 0.31728 0.18718 16.923
0.83 6.0065 3.2062 1.6993 0.94122 0.53204 0.31331 0.18680 12.8854
1.23 2.5053 1.7048 1.1013 0.70920 0.44518 0.28212 0.17577 6.9237
1.80 0.91169 0.74615 0.56949 0.42475 0.30158 0.21122 0.14245 3.30733
2.87 0.23647 |  0.22647 0.20035 0.17178 0.13878 0.10926 | 0.08177 1.16488 |
(b) L -4, -4, odd, exchange neglected 2p eigenstates coupling approximations
K, L=1 L=2 L=3 L=4 L=5 L=6 L=7 2,
0.24 61,12 8.444 2.5808 1.1408 0.6200 0.3720 0.2516 74.52
0.50 15.292 6.884 2,5436 1.1580 0.6216 0.3640 0.2352 27.10
0.68 8.008 4,940 2,2548 1.1160 0.6160 0.3640 0.2352 17.54
0.83 5.108 3.6364 1.9292 1.0380 0.5968 0.3592 0.2340 12.90
1.23 2.0484 1.7392 1.1812 0.7652 0.4972 0.3236 0.2208 6.776
1.80 0.7640 0.7220 0.5816 0.4436 0.3312 0.2400 0.1784 3.261
2.87 0.2132 0.2180 0.2004 0.1776 0.1520 0.1272 0.1064 1,195
() L -4, -4, 0dd, 2p eigenstates coupling approximation
Singlet T
K, L=1 L=2 L= L=4 L=5 L=6 L= 24
0.24 2.963 4,161 0.6725 0.2861 0.1552 0.0930 0,0629 8.394
0.50 3.735 3.182 0.7915 0.3066 0.1576 0.0913 0.0589 8.323
0.68 2.165 1,728 0.6851 0.3025 0.1587 0.0920 0.0590 5.190
0.83 1.371 1.107 0.5562 0.2799 0.1547 0.0913 0.0589 3.619
1.23 0.5280 0.4603 0.3115 0.1991 0.1277 0.0823 0.0558 1.7647
1.80 0.1928 0.1831 0.1475 0.1124 0.0837 0.0605 0.0449 0.8249
2.87 0.0534 0.0547 0.0503 0.0445 0.0381 0.0319 0.0267 0.2996
Triplet
k, L=1 L=2 L=3 L=4 L=5 L= L=7 I
0.24 49.22 3.265 1.850 | 0.8528 0.4650 0.2788 0.1886 56.12
0.50 7.791 1.851 1.504 0.8193 0.4598 0.2722 0.1764 12.87
0.68 4,720 2.219 1.361 0.7700 0.4481 0.2700 0.1756 9.964
0.83 3.373 2.099 1.237 0.7198 0.4318 0.2652 0.1744 8.300
1.23 1.484 1.225 0.8376 0.5509 0.3630 0.2384 0.1639 4.863
1.80 0.5674 0.5337 0.,4295 0.3283 0.2456 0.1784 0.1330 2.4159
2.87 0.1596 0.1632 0,1500 0.1328 0.1136 0.0951 0.0797 0.8940
(d L -4, -4, even, Born approximation
k, | L=0 L=1 L= L= L=4 L=5 L=6 L=7 2g Qr
0.24 | 12.488 230.42 4.,0427 1.9014 0.30797 | 0.57480 | 0.29675 | 0.06128 | 250.09 290.69
0.50 | 0.1758 74.475 7.0963 0.92172 | 0.48094 | 0.45745 | 0.30098 | 0.05695 | 83.965 109.714
0.68 | 0.07386 | 36.478 6.5573 1.0156 0.29902 | 0.27895 | 0.23113 | 0.04364 | 44.978 |- 63.742
0.83 | 0.22032 | 21.559 5.4143 1,1653 0.26124 | 0.15835 | 0.15225 | 0.02533 | 28.956 43.572
1.23 | 0.25024 | 7.3349 2.9703 1.1453 0.37750 | 0.11091 | 0.04377 | 0.03572 | 12.269 20.571
1.80 | 0.13477 | 2.3518 1.3155 0.74676 | 0.39290 | 0.18754 | 0.07731 | 0.02824 | 5.2348 9.6066
2.87 | 0.04395 | 0.55809 | 0.40443 | 0.30267 | 0.21866 | 0.15188 | 0.09753 | 0.05832 | 1.8355 3.8272
3.91 | 0.01868 | 0.20876 | 0.17048 | 0.14307 | 0.11656 | 0.09255 | 0.06896 | 0.04864 | 0.8677 2.1455
(e) L -4, -4, even, exchange neglected 1s - 2s - 2p eigenstates coupling approximation
K, L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 Ze Qq
0.24 | 31.96 91.21 154.6 92.86 55.86 36.79 24.37 - 487.7 566.32
0.50 | 9.371 12.65 30.88 20.53 12.99 8.451 5.695 - 100.6 129.8
0.68 | 4.156 5.953 13.19 9.628 6.563 4.508 3.130 - 47.13 66.56
0.83 | 2,542 4.560 7.424 5.249 3.811 2.793 2,032 - 28.41 43.07
1.23 | 1.208 2.879 2.906 1.734 1.106 0.8438 0.6912 - 11.37 19.56
1.80 | 0.5612 1.385 1.238 0.8299 0.5109 0.3005 0.2022 - 5.028 9.382
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Table 6 (Concluded)
2p - 2p Elastic Cross Section.

®HL-4, - 4, even, 1s ~ 2p eigenstates coupling approximation

Singlet
k, L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 Zge —
0.24 | 1.964 5.238 17.34 1.260 0.4896 | 0.2460 -- - 26.54 -—
0.50 | 0.5131 3.159 1.544 1.439 0.4063 0.1906 0.1133 -- 7.365
0.68 | 0.2346 2.091 1.039 0.4944 0.2539 0.1520 0.0984 -— 4.363
0.83 | 0.1227 1,252 0.9930 0.1532 0.1191 0.0990 0.0766 - 2.816
1.23 | 0.1071 0.6796 0.6167 0.2249 0.0635 0.0249 0.0217 - 1,7384
1.80 | 0.0571 0.3366 0.2926 0.1818 0.0954 0.0426 0.0172 - 1.0233
Triplet
k, L=0 L=1 L=2 L=3 L=4 L=5 L=6 L=7 Zey Q
0.24 | 15.62 26.72 32.44 6.674 1.252 0.7359 - - 83.44 178.89
0.50 | 4.844 3.384 19.97 12,52 0.8285 | 0.3266 0.2754 - 42.15 72.80
0.68 | 2.247 3.886 10.33 5.922 1.035 0.2270 0.1764 - 23.82 45,22
0.83 | 1.293 3.650 6.287 3.476 0.9248 0.2097 0.1162 - 15.957 32.45
1.23 | 0.4842 2,287 2.424 1.418 0.6072 0.2079 0.0717 - 7.500 17.28
1.80 | 0.1909 1,063 0.9673 0.6659 0.4001 0.2024 0.0962 - 3.586 8.943
€) L- 4’,1 - JEZ even, 1s ~ 2s - 2p eigenstates coupling approximation
Singlet
k, | L=0 L= L=2 L=3 L=4 | L=5 L=6 L=7 Zgs -—
0.24 | 7.852 13.45 38.56 21.41 15.44 8.610 6.432 - 111.75 ———
0.50 | 2.470 5.026 7.433 4,900 3.201 2.101 1.417 - 26.548
0.68 | 1.344 2.283 3.025 2.683 1.756 1.166 0.7903 - 13.047
0.83 | 0.7424 1.316 1.579 1,518 1.079 0.7580 0.5313 - 7.524
1.23 | 0.2813 0.6752 0.6254 0.3663 0.2726 0.2289 0.1916 - 2,641
1.80 | 0.1357 0.3339 0.2862 0.1816 0.1065 0.0659 0.0471 0.0383 1.1952
2.87 | 0.0513 0.1053 0.0930 0.0739 0.0553 0.0391 0.0268 0.0181 0.4628
3.91 | 0.0267 0.0451 0.0422 0.0373 0.0318 0.0261 0.0212 0.0166 0.2470
Triplet
k, L=0 L= L=2 L=3 L=4 L=5 L=6 L=7 2o Qr
0.24 | 27.90 75.79 63.10 87.21 41.31 26.12 17.13 - 338.56 518.92
0.50 | 4.337 4,540 20.66 21.62 10.38 6.373 4.255 - 72.17 122.01
0.68 | 2.823 4.018 10.75 8.986 5.149 3.337 2.302 - 37.37 67.46
0.83 | 2.032 3.674 6.400 4,796 2.950 2.013 1.468 - 23.333 44,54
1.23 | 0.9741 2.290 2.465 1.599 0.9568 0.6421 0.4924 - 9,419 20.11
1.80 [ 0.4291 1.055 0.9303 0.6614 0.4150 0.2540 0.1639 0.1180 4,027 9.531
2.87 | 0.1564 0.3217 0.2907 0.2330 0.1780 0.1291 0.0907 0.0623 1.4619 3.945
3.91 | 0.0805 0.1366 0.1285 0.1143 0.0982 0.0810 0.0655 0.0524 0.7570 -—
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Table 7
2s - 2p Excitation Cross Section.

(a) Born approximation

k, L=0 L=1 L=2 L=3 L=4 L=5 L=6 b *Qr
0.245 | 210.45 465.14 £49.77 343.68 148.60 209.74 158.31 1985.69 | 13560
0.500 | 6.2469 30.729 57.561 64.948 54.469 49.590 40.391 303.935 | 3465.0
0.678 | 0.92003 | 6.6619 16.736 24.356 25.702 24.598 21.122 120.096 | 1930.9
0.831 | 0.24580 | 2.1480 6.4066 11.011 13.641 14.135 12.973 60.560 1308.4
1.225 | 0.02039 | 0.20887 | 0.78437 | 1.7481 2.7859 3.6015 3.9501 13.099 620.51
1.803 | 0.00187 | 0.01900 | 0.07823 | 0.20201 | 0.38645 | 0.59807 | 0.78354 | 2.0692 294.95

2.872 0.00011 0.00107 0.00444 0.01211 0.02545 0.04450 0.06688 0.15456 120.26
3.905 0.00002 0.00017 0.00067 0.00182 0.00389 0.00699 0.01096 0.02452 66.509

(b) Exchange neglected 1s - 2s - 2p eigenstates coupling approximation

k, L=0 L=1 L=2 L=3 L=4 L=5 L=6¢6 5 Qr
0.245 5.311 12.59 23.21 - - - - 41.11 12476
0.500 0.8651 10.55 1.143 18.92 26.25 - - 57.73 3308.8
0.678 1.150 5.907 0.5760 7.168 12.28 14.46 15.08 56.62 1867.4
0.831 1,249 2.859 0.3831 3.158 6.664 8.591 9.391 32.295 1280.1
0.225 0.3847 0.4266 0.0881 0.4560 1.403 2.328 3.022 8.108 615.52
1.803 0.0654 0.0516 0.0142 0.0553 0.1846 0.3930 0.6183 1.3824 294.26

(c) 1s - 2s - 2p eigenstates coupling approximation
Singlet

k, L=0 L=1 L=2 L=3 L=4 L=5 L=¢6 2 -—
0.245 2.243 4.424 3.276 - - - - 9.943 -—-
0.500 0.1241 1.605 1.348 6.360 7.159 - - 16.596
0.678 0.0362 1.446 0.5518 3.056 3.693 3.911 - 12.694
0.831 0.1866 0.9881 0.2615 1.488 2.144 2.433 2.505 10.006

1.225 0.1048 0.1516 0.0384 0.1639 0.4584 0.7031 0.8529 2,473

1.803 0.0175 0.0157 0.0046 0.0148 0.0530 0.1108 0.1726 0.3890
2.872 0.0014 0.0010 0.0004 0.0010 0.0032 0.0075 0.0133 0.0278
3.905 0.0002 0.0002 0.0001 0.0002 0.0005 0.0012 0.0019 | 0.0043

Triplet 3+ 3, Q

K, L=0 L=1 L=2 L=3 L=4 L=5 L=6 P T
0.245 | 0.0000 10.40 56.74 - - - - 67.14 77.083 12512 |
0.500 | 2.322 7.125 2.357 3.838 17.01 - - 32.652 | 49.248 | 3300.3
0.678 | 1.590 2.363 0.3333 1.442 6.810 9.868 - 22.406 | 35.100 1867.0
0.831 | 0.9885 | 1.125 0.1226 | 0.8444 | 3.411 5.518 6.556 18.566 | 28.572 1276.4
1.225 | 0.2648 | 0.2173 0.0402 | 0.2297 | 0.7623 1.423 1.987 4.924 7.397 614.8
1.803 | 0.0455 | 0.0310 | 0.0094 | 0.0383 0.1223 0.2544 | 0.4070 0.9079 1.297 294.18
2.872 | 0.0040 | 0.0024 | 0.0009 0.0031 | 0.0095 0.0208 | 0.0359 0.0766 | 0.1044 120.21
3.905 | 0.0007 | 0.0004 | 0.0002 0.0005 | 0.0015 | 0.0035 | 0.0063 0.0131 | 0.0174 | 66.502
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'1(‘;5[4.8451—,“"'1[]1(2] , W = 71-—7 +§Z a t+3lnn, 7 = 1+ 4k, (Reference 26).
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Appendix A

The Four Differential Equations

d? L(L+1) 2
[——— + klz-—Tz— t- u(le, r)

= 2y,(1sls, r)u(k, L, r) + 2y, (1s2s, r)ulk, L, 1)

L 172
* 2[_—_3(2L+ 1)] ¥y (1s 2p, 1) u(k,L-1, 1)

L+1 1/2
-2 [3(?L+ 1):! y,(1s 2p, r) u(k2L+ 1, r)

28 28
+ 3071 R (1) y, (lsl-cl L, r) + 3151 Ry (r) vy, (1sk, L, r)

i 172
* [(2L+ 1) (2L- 1)2:] Ry (1) ypy (Isk,L-1, r)

3(L+1) 1/2
- 28 [:(214'*’1)(2].*‘3)2} TRn(r)yLﬂ(lskzL+l,r)
- B3(L, 0) (1+k2) (1slk, L) rRy (1)

- BS(L, 0) (1+k2) (1slk, L) rRy (1)

- B5(L-1, 0) (1+k2) (1slk, L= 1) rRy (r) (A1)
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d? L(L+1) 2
|id_r2 +k22— 7 + u(k2L, r)

= 2y, (1s2s, ryu(k;L, 1) + 2y (2s2s,r)u(k,L, r)

4+

L 172
2[3(_§i+_1)] ¥y (2s 2p, r) u(k,L-1, 1)

L+1 1/2
- 2[3(2T1—):l vy (2s 2p, 1) u(k2L+1,r)

+

28 20
7T Ry (r)yy (25 k, L, r) LT T Ry (r)yy (251{2 L, r)

3L 172
| G e (ki)

3(L+1) 12

- 2ﬁ[m} rRyy (1) yper (25, L+ 1, 1)
1

- B5(L, 0)<T+k12) (2slk; L) rRyo(r)

- BS(L, 0)(—‘1; +k22) (2slk, L) rRyo (1)

- BS(L-1, 0)(71;+k22) (2slk, L-1)rR,, (r) . (A2)
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+ %}u(kzL— 1, r)

o

L 1/2 L 172
A1y Yi(Is2p r)u(k, L, r) + 2 [m] v, (2s 2p, r) u(k,L, r)

L-1
+ 2[y0 (2p2p, 1) + SALF 1) V2 (2p 2p, r):| u(kzL- 1, r)

6 YL(L+1
-‘5—7(1171—) vy, (2p 2p, r)u(k2L+1, r)

3L 12
+ 28 [m:' rRlo (r) vy (2p k, L, r)

L 12
! 2ﬁ[(zL+ 1)(2L—1)2] Ry (r) vy, (2pk, L, 1)

63 ve (2pk,L-1, 1) L-1
L) PN | rRzl(")[ (2L + 1) t =3 Y2 (2Pk, L1, 1)

6@ D)
(2L +1)?

v. (2Pk,L+1, 1) 1Ry (1)
1 )
- B5(L, 1)(—; +kf) (2p|k1L)rRm(r)

- BS(L, 1)(% +k22) (2plk, L) rRy(r)

1
- B8(L, 2)(7 +k22) (2plk,L-1)rR, (r) . (A3)
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r

2

%]u(k2L+1, r)

L+1

_ L+1 1/2 e
= - 2[3(2L+ 1)] ¥, (1s 2p, r)U(kl L, r) - 2[3(21 +1—)J ¥, (2s 2p, 1) U(kz L, r)

6 YL(L
—g__%il_z ¥, (2P2P, !') u(kZL‘ 1, r)

(L+2)y, (29 2p, 1)
+ 2y, (2p2p, r) + 5(2L+ 1) u(k2L+1, r)

3(L+1) /2
% [m] rRlo (r)yru (2P k, L, r)

3(L+1) 172
2'Bl:(ZLJr 1) (2L + 3)2] TRy (r)yp sy (2pk2L, r)

_ LD

(2L +1)2 Ry (M) yy (2Pk2L‘1, r)

vy (2pk,L+1, 1) (L+2)yp,, (2pk,L+1, r)

68
+ 5073 ngl(r)[ (2Li1)? + LS

- B3(L, 0)<7i‘ +k22) (2p|k2L+1) Ry, () .

}
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Appendix B

Elements of the Potential Matrix

Elements of D;;

_ 1\ _ _ 1 3 ¢ 2\ __
D, = —<1+T)e T, Dy, = ‘(T+T+T+—8)e ’

_ o fr 3 ¢ f2] . e@-1Of1 /1 1 1 1 r %2\ _
D;; = ‘[?*T*T*T&]e’*ﬁ[ﬁ'(ﬁ*ﬁ*ﬁ*'g*ﬁ*m)e']'

1 .3 ¢ 2 . e@+2)|1 ({1 1 1 1 r 2\ _
Dy ~ ‘[T*T*T*’ﬂ]e’*ﬁ[?‘(ﬁ*?*ﬁ*?*iﬁ*lm)e’:|v

D12 = 1)21 = 2—9'2(,+—§—)e-3/2r
Dls = D31 1%23}@X<2LI;1)1/2 [;%*(rlz+73;+—g—+—267{-) e_3r/2]
ne s ne s HEEN) 5 (50R 5 ) o]
e o () (A (b )]
_ _ L+1\V2[ 1 1 1 1. r 12\ _
R R NCRCE Sl
D, = D, = - 18[(1-2(11::11))2]1/2 I:;l;“(_r—l;+:l7+2l_r+%+%+%) e-r:l )

Elements of Fi;

R, (* TR
- B |l , . o,
Fn = 2L+1 rL Rppr™ dr’ - Ryort*! r dr’ |,
0 0



R r R
. B |2 ) . 200
Fp = 72L+1 oL Ryor™*1dr’ — Ry, r** FL dr' |,
0

T r
_ 38 1 Ry , , R;: ,
Fyo = -1 (2L+ )2\ L J Ryttt dr’ =Ry r TL dr

0

L-1 Rat r _ , i Ry
+ 2L'3<rL—2 J; Ry, r* tdr 'RzlrLl L L2
R r "R
38 1 21 21
= ————— — L+l r_ L+1 - 1
Foa 2L+3|:(2L+1)2<r1~ J; R2lr dr Rmr . oL dr >

L+2 [ Ra ! " Ry
) T < L+2 J Ruyr ¥ dr - Ry, rt*3 J FL*2
0

R T R
- B 20 s , 10 ,
F12 - AL+ 1 : R1 r L+1 dr’ - R20 rL“ —'L dr )
0 0
F21 = Fl2 [RIO €~ R20] ’

~ L 172 Ry (F . L " Ry
Fy = V33 (2L+1)(2L_1)2} | —o7 ORmr dr -Ry, r omdr ,

Foo = Fpg ,:RIO = Rzl] ’
_ L+1 172 Ry (7 , i
Fo = - ﬁ/j[(QLar 1) (2L + 3)2:\ x I:rLﬂ . Ry r 22 dr’ - Ry 2 , o
Fo = Fy [Rlo = R21] ,
L 1/2 Ry f " Ry
F = 3 'L . _ L '
23 Y38 [(2L ¥1) (2L- 1)2} x [rL—l . Ry r'hdr’ =Ry r , Tt dr :|
Fao = Fy [Rzo 2 Ry ] ,
L+1 172 Ry (7 " Ry
R —_— 1L+ L L+2
T v [(ZL +1) (2L + 3)2} " [ o1 | Rt drT Ry R
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34

34

1P [Rzoe__—) Rzl] ,

TLw+1y 2 |[Ra (7 " Ry,
- 38|\ - R.. L+l gr’ - L+1 ,
p[(2L+1)‘*J s . nT TRyt o—r'L dr’ |,
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Elements of gij and hij

€22

1
B33

2
€33

g12

€21

E13

€14

/BRIO rL+l 1+k12
L+1 ° by T Ry r_L - p] S(L, 0)r |,
R, L
200 _ 1 4 2
L+1 ' hyy T Ry T 8L 0)r)
L
PR s h!l = _R_z_‘
(2L-1) (2L +1)? 33 L

38(L - 1) Ry £ L T k2
(L-1)(2L-3) ' h = Ry =5 ——7— 8L, 2)r |,

37 Ra - 1 1 % + l"22
A (nz e T R |wT T O,

35(L + 2) Ry, fL*3 Ry
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(2L +3) (2L * 5) hg (L2

A Lot 1 1 +k22
L+1 Ryr » hy T Ry L2 5L, 0)r |,
€12 [Rzo"9 Ry ] » hy = hlZ[RIO > Rzo] ’

L 1/2 L 1 1 +l«:22

V38 (ZL+1) (2L- 1)2 Rur v hyy = Ry L1 2 S(L.1yr |,
g13 [R2l _—>R10] » hy = hy, [Rxo > RZI] ,

L+1 v2 Ry
- L+2 - ,
ﬁﬁ[(an)(zus)Z} Rt By reS




g [Rzl'_> Rlo] v hy = hy, [Rxo'—>R21] )

Ea1
L 1/2 1 % +k2
€3 - 138 |:(2L+1) (2L - 1)2:’ nth o My T Ry i - (L. Dr|
€3 ~ €33 [R21 -—> Rzo] s hgy T hy, [Rzo -—> RZl] >
B2e © 7 ﬁﬁ[uu1L)+(;L+3)2jll/2 Ryt o hy = % ’
By T By [R21 - Rzo] v hgy T ohy, [Rzo - R2l] ,
g4 - - 38 [(142%:11))_4}1/2 Ryt , h,, = % ,
843 - €34

In the F,, matrix the interchange of the functions R,,, R,,, and R,; accompanies the inter-

change of their arguments too.
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Appendix C

Removal of the Singularity in the Determinant of the Coefficients
of the Linear Transformation for L = O, 1

Case :L=0

By using the definition of D,; and F;; and Equations 63 in the text, the following relation can
be derived from Equation 59 (text):

@

a2 d2 ~ 2
I}Rzo(_drz +k12> v, ~B 1Ry, (m +k22> v{' dr = - ﬁ [a13 B,, ~Ba, B14] , (C1)

0

where the superscript » is suppressed when there is only one value for ., and

a,, ~ Ry,Ry ridr @ - 373 .
7o

Integrating the left-hand side of Equation C1 by parts, and making use of Equations 11 and 63 (text),
we obtain

d? d?
[rRm(F +k12> v, -8 er<F +k22) vz}dr = - 2[By, - BBy,] . (C2)

We conclude that

1
B,y ~ BBy = "'73—[313324—/33231314] . (C3)

Equation C3 connects the right-hand sides of the four equations of Equation 62 specified by

ij =21, 12, 24, 14. A similar relation should hold among the left-hand sides of these equations.
This in fact is the case and, by making use of the first of Equations 63, it can be shown directly that
equations similar to Equation C3 hold among the elements of each column ki1v of the left-hand side
of Equation 62 specified by ij = 21, 12, 24, 14. We conclude that one equation of Equation 62 is
linearly dependent on others and the determinant of Equation 62 is singular.
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Casell: L =1

Similar to the previous case, the following relation can be derived from Equation 59 in the
text:

2 3
= 3—[53 *BRayBy -a Bt "2 (‘313334 58 a3SBl4>j| ’ (C4)

where

a,, = JRZZ’lr“dr = 30 .
0

Integrating the left-hand side of Equation C4 by parts, and making use of Equations 11 and 63, we
obtain

R<d2 +k 2 2) ,BR<d2 +k2> dr = 2 [B;,- BB]
r . I - R - - - .
21\ 4 2 1 2 /Va TR10\ 42 2 V3| ar 31 13 (C5)

Combining Equations C4 and C5, we get

-1 : 3
By BBy = 3 |:,8a13B“+/3a23B12— a Byt N2 <313834— 5 ﬁassBM)} ' (C6)

Finally, Equation 59 (text) gives the following relation:

d2 2 d?
[rRm(—dr2 + k22 - §>v2 - B 1R, <E'_2 +k22> vsj dr

2
= 3[5323822+18313 ~a,Bg }’_< 2383 -5'6833 24>j| ’ (€7)

Integration by parts of the left-hand side gives, as before,

0

d? 2 d? _
’:ar(:i? +k22 - F) v, —,BrR20 <F;—2 +k22 vyldr = -2 [B32 -ﬁst] , (C8)

0
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whereupon we get
21 1 3
By, - BBy; = F|BayBytBayBy-ay; Bt 12{a,; B, - T Bag By, (C9)

Similar to the case L = 0, Equations C6 and C9 indicate that two equations of Equation 62 are
linearly dependent on others and the determinant of Equation 62 is singular.

To remove the singularity in the L = 0 case, one of the C% is chosen to be arbitrary; and a
degenerate equation is removed from Equation 62 (text). Similarly, in the L = 1 case two of the
¢, are chosen arbitrary; and two degenerate equations are removed from Equation 62.
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Appendix D

Elements of the Matrix of the Sum of the Asymptotic
Coulomb and Centrifugal Potentials

U, = L(L+1)r2, U, = L(L+1)r 2,

U, = (L-1DLr"2 + 12(L- L+ T3, U, = (L+1)(L+2)r 2+ 12(L+2)(2L+1) e,

_ _ _ _ 125672 L vz o
U, = Uy = 0, U, = Uy = [ 243 :H:Zil:+15:l 2

- _ 256 V2 {| (L+1) |2 _ _ ) L vz
Ue = Uy = ‘[243 M(EL_H)} 2, U, U, = o-6lmmEny| 2

_ _ L+1) [V2 _, - 12 -1 .-3
Up = Uy = 6|7@Fny| 2 Us = Ug - B[LL+ D]V (A1) e

NASA -Langley, 1964 G-419

47



